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ABSTRACT: We observe twinning of two-dimensional (2D) rhombic
colloidal crystals of hard Brownian rhombic platelets. By contrast to square
particles, which have higher symmetry but can also form rhombic lattices at
high densities, each rhombic particle has a distinguishable bidirectional
pointing axis. This key feature, which is not readily seen in rhombic crystals of
square colloids, facilitates observations of different types of twinning: contact,
polysynthetic, and cyclic. Moreover, we find that the twinned crystals are
slightly offset spatially along their shared mirror line. In addition, the average
pointing axis of the particles in a single crystal is also offset on average by a
small angle, either clockwise or counterclockwise, from the average pointing
axis of the rhombic lattice yielding a form of nonlocal chiral symmetry
breaking. Because mirror lines between contact twins introduce only a small
reduction in the total number of accessible states, compared to a perfect single
crystal, twinning and piecewise linear defects are commonly observed. Thus, twinning, which is usually associated with complex
compositions in certain minerals, also emerges in a simpler 2D system of entropically driven, hard, achiral objects.

■ INTRODUCTION

Twinning is commonly found in many different types of
crystalline minerals made of atomic or molecular constitu-
ents.1−4 Twinning naturally occurs when lattice points in one
crystal are shared as lattice points in another crystal that has a
distinguishably different orientation. Twinning is typically
classified in several ways, whether based on symmetry of
observed structures or on formation processes. The simplest
structural twin is the contact twin, in which there is reflection
symmetry of the two twinned crystals across a contact plane,
also called a mirror plane. Twinned crystals are often beautiful
mineral structures, and pyrite (iron disulfide), also known as
“fool’s gold”, commonly exhibits twinning.5 Twinning can even
occur in protein crystals.6 Twinning has also been observed in
three-dimensional (3D) dense systems of colloidal objects that
have hard or charge-repulsive interactions.7−10 However, to
date, twinning has not yet been experimentally demonstrated in
2D Brownian systems of hard colloidal objects, including
nonspherical colloids that have exotic shapes.11,12

Colloidal crystals of hard spheres13 serve as a basic starting
point for examining the origin of atomic and molecular crystals
because the spheres have a simple interaction potential, exhibit
Brownian motion, and can be observed readily using real-space
microscopy,14 and their trajectories can be directly obtained via
video particle tracking.13,15,16 Often, differently oriented
crystalline grains of a colloidal crystal meet at grain boundaries:
regions that exhibit an increased amount of disorder. Compared
to grain boundaries between single crystals which are
commonly observed,15 twinning in systems of colloidal hard
spheres has been reported experimentally only under shear7 or
during seed structure-initiated crystal growth.10 Beyond

spheres, other new colloidal shapes have been synthesized,
both using bottom-up11,12,17 and top-down methods.18−25

Although crystal twinning has not yet been observed for a
limited range of nonspherical shapes examined so far, it is
possible that certain shapes could have a greater propensity to
form twinned crystal structures.
Recently, a general method of exploiting roughness-

controlled depletion attractions (RCDA) of custom-shaped
microscale lithographic platelets has been developed, permit-
ting the study of two-dimensional (2D) Brownian systems of
hard microscale particles that are ideal for simple optical
microscopy.26,27 The classic depletion attraction arises entirely
from entropic considerations of hard colloidal objects and
occurs when larger colloids are mixed with smaller nanoscale
colloids, known as depletion agents,28 in a colloidal dispersion.
As both the larger and the smaller colloids diffuse in the liquid,
the smaller colloids diffuse more rapidly and effectively exert an
osmotic pressure on the surfaces of the larger ones. When two
larger colloids diffuse into close proximity with one another, the
smaller colloids become excluded from the region in between
the larger ones, thereby creating an attractive force between the
larger colloids due to an imbalance in the osmotic pressure
acting over their surfaces.26 The classic depletion attraction is
very short in range, corresponding to the diameter of the
depletion agent and can be highly sensitive to the shape and
size of the larger colloids relative to the smaller colloids.
Beyond the classic case, RCDA alters the strength and
anisotropy of the depletion attraction by tuning the size of a
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nanoscale depletion agent relative to the nanoscale roughness
on the larger colloids. The roughness on specific surfaces of the
larger colloids can be made to be larger or smaller than that of
the depletion agent; typically, the surfaces with higher
roughness do not strongly attract even when surfaces having
smaller roughness do attract. For custom-shaped larger colloids
made lithographically, the edges of the particles are typically
rougher than their faces. So, by introducing a spherical
depletion agent at an appropriate concentration having a
diameter in between the two roughness length scales, we create
a system in which the effective in-plane attraction between two
edges of platelets is less than thermal energy kBT, yet the
depletion attraction between the faces of platelets and the flat
wall of container is high enough to hold the platelets parallel to
the wall to form a lubricated monolayer in which the platelets
can still diffuse (see ref 20, Supplemental Material). Thus, for
the 2D system, in-plane particle interactions between the edges
of the platelets are effectively hard. The volume fraction of
platelets is dilute enough that the platelets settle and their faces
become attracted to the lower wall of the microcuvette before
aggregates of platelets form in the bulk.
Using RCDA, several different systems of hard regular

polygons, such as pentagons,20 squares,25 and triangles,21 in 2D
have revealed a rich variety of phases and quenched disordered
structures. In these systems, Brownian fluctuations are very
important, and entropy maximization effectively governs the
phase behavior. Even in these rich systems of highly symmetric

polygons, the effect of twinning has not been observed.
Evidently, obtaining robust manifestations of twinning in 2D
Brownian colloidal systems of a single type of monodisperse
hard shape requires geometrical features of particle shape that
have not yet been sampled in prior studies.
Here, we report and explain observations of twinning in 2D

rhombic (RB) Brownian colloidal crystals composed of hard,
monodisperse, rhombic platelets (i.e. rhombs, internal angle
72°, edge length L = 2.0 ± 0.1 μm, and thickness h = 2.0 ± 0.1
μm) made using optical lithography (see Supporting
Information). Although rhombs are achiral and have a single
edge length L, similar to squares, rhombs additionally have
unequal internal angles, which reduces the four-fold rotational
symmetry of squares to two-fold for rhombs. Thus, a rhomb
has a uniaxial (i.e., headless) director29,30 along its long
diagonal. We show that, while rhombs having a 72° internal
angle exhibit a qualitatively similar phase behavior as squares
when the particle area fraction ϕA is increased to higher
densities, by contrast to squares, rhombs have a propensity to
readily exhibit twinning in a RB crystal phase. The twinned RB
crystals of hard rhombs interdigitate along the twinning line;
this interdigitation causes a transverse offset between the
twinned crystals and only slightly decreases the entropy of
twinned crystals compared to a pure single crystal. In 2D
twinned RB crystals, not only is the lattice a mirror image
across the twinning line, but the director (i.e., pointing axis) of
the rhombs within the lattice is also mirror symmetric.

Figure 1. Transmission optical micrographs of Brownian rhombs at particle area fractions ϕA: (a) 0.56, hexatic (H); (b) 0.57, RX crystal, (c) 0.59,
CE; and (d) 0.62, RB crystal (scale bar = 10 μm). Insets, lower left corners: FFT intensities calculated from real-space images (white scale bar = 0.2
μm−1). Nearest neighbors around a central particle in (c): RX (red hexagon) and RB (blue rhombus) crystallites. A single point defect (orthogonal
orientation) of a rhomb particle can be seen in the lower middle region of the RB crystal in (d). Inset in the lower right corner of (d): scanning
electron micrograph of a rhombus particle (small black scale bar = 1 μm).
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Interestingly, the observed angle of the RB lattice, which
appears just above the transition from hexagonal rotator crystal
to RB crystal is much closer to, but slightly below, 90° for
rhombs, and this angle is predicted by a rhomboid cage model
to increase toward 108° as ϕA approaches unity. Also, at lower
ϕA, the lower symmetry and higher aspect ratio of rhombs, as
compared to squares, favor the formation of an interesting
variant of a hexatic liquid crystal phase30,31 between the
isotropic and the hexagonal rotator phases.

■ RESULTS
The progression of observed 2D phases of 72° rhomb colloids
for increasing ϕA is shown in Figure 1: A spatially and
orientationally isotropic phase (I) at low ϕA gives way to a
hexatic liquid crystal phase31,32 (H) that has a classic
appearance of six azimuthally smeared spots (i.e. a six-fold
modulation) in reciprocal space at ϕA ≈ 0.56 (Figure 1a).
There is a gradual change in bond orientational order from I
(ϕA ≤ 0.54) to H (0.54 < ϕA < 0.565) that indicates this
transition is closer to second order for anisotropic rhombs (see
Figure S1b), rather than the first-order transition that is
predicted by a simulation for isotropic hard disks.33 This
smearing is reduced substantially at slightly higher ϕA ≈ 0.57,
yielding a narrow region 0.565 < ϕA < 0.59 in which a
hexagonal rotator (RX) crystal is found (Figure 1b); this is
followed by a crystal−crystal coexistence region (CE) 0.59 ≤
ϕA < 0.60 (Figure 1c) between highly defected, small domain
RX and RB crystals. The CE region is followed by a pure RB
phase for ϕA ≥ 0.60 (Figure 1d) that can exhibit several forms
of twinning and may contain isolated orientational defects. The
upper limit of ϕA in the RB region is set by a number of factors
that influence the maximum applied osmotic pressure in the
equilibrated column, including the tilt angle of the sample cell
and the total quantity of rhomb particles in the cell.
Because the diameter D of the circle that circumscribes a

rhomb is larger than the circumscribed diameter for a square
having the same area, the particle densities associated with
phase transitions for rhombs occur at smaller ϕA than for
squares.25 Also there is a greater spread of center-to-center
positions of the rhombs (which can point in different
directions) relative to the ideal hexagonal lattice, so the peaks
in reciprocal space are smaller and broader for RX of rhombs
than for RX of squares (Figure 1b, inset). Intermixing of small
crystallites of RX and RB in CE can lead to what effectively
appears as hexatic-like features (Figure 1c, inset), but this does
not have the same physical origin as the six-fold modulation in
the fast Fourier transform (FFT) of the H phase at lower ϕA. In
the RB phase (Figure 1d), the rhombs tend to point with an
average headless director that lies in between the two unit
vectors that describe the RB lattice. Interestingly, various forms
of twinning of the RB phase are also observed, and we focus on
this effect in more detail below.
In Figure 2a, we present measurements of the angle α

characterizing the lattice of RX and RB phases (see inset for
definition), obtained from average Fourier transforms of
images, as a function of ϕA. In the RX phase, the lattice
angle is α = 60° as expected for a hexagonal lattice. However,
for the pure RB phase, just above the coexistence region, we
find α ≈ 85°. Thus, in striking juxtaposition, the RB lattice
angle for 72° rhombs is much closer to a square lattice
(corresponding to α = 90°) than the RB lattice angle for square
particles, which have α ≈ 73° just above CE.25 This unexpected
behavior is a consequence of rotational entropy and the higher

aspect ratio and lower symmetry of the rhombs compared to
the squares. The dimensionless average center-to-center
spacing, r/D, decreases as ϕA is raised, as shown in Figure 2b.
A rhomboid model is useful in explaining some of the main

features of the observed RB crystals. In Figure 2c, to effectively
incorporate rotational entropy into a spatial packing problem,
we define a rhomboid shape to be the total swept-out area
obtained by rotating a rhombus particle about its center over a
range of angles ±Δθ/2. Although an approximation is involved,
we effectively convert a complex problem in statistical
mechanics of maximizing the combined rotational and
translational entropy of hard rhomb particles into a simpler
geometrical problem of maximally close-packing rhomboid
shapes which cannot overlap. The rhomboid is analogous to the
squaroid,25 and when many rhomboids are packed most
efficiently, they undergo a continuous transition from a
hexagonal to RB lattice as Δθ decreases (i.e., equivalently as
ϕA is increased), and the rhomboid’s shape changes from disk-
like to nearly rhombic. In Figure 2d, we show a symmetric

Figure 2. Particle area fraction ϕA dependence of the unit cells for
observed crystals of Brownian rhombs. (a) Measured lattice angles α
(RX, diamonds; RB, circles). Left inset: schematic definitions of α
(e.g., for RB) and the center-to-center distance r between rhombs in a
unit cell. Right inset: α predicted using the rhomboid model over an
extended range of ϕA. (b) Measured r normalized by the diameter of a
circumscribed circle, D (left inset). Right inset: r/D predicted using
the rhomboid model. Solid lines compared with data are rhomboid
model predictions. In the CE region, two measured values of α and r/
D are shown, corresponding to RX and RB crystallites. (c) Rotating a
rhombus about its center ± Δθ/2 sweeps out a rhomboid shape
(entire green region). (d) Example of a RB unit cell having angle α
formed by packing four rhomboids symmetrically.
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packing of four rhomboids that form the unit cell of a RB
lattice. The predictions of the rhomboid model for α and r/D
are shown as the lines in Figure 2a,b (see Supporting
Information for a detailed explanation of the model). Extended
predictions of the rhomboid model show a continuous change
in α(ϕA) in the RB phase, and α approaches an angle defined
by the particle shape, 180° − 72° = 108°, as ϕA approaches
unity and the rhombs fully tile the plane at r/D = 0.618.
Interestingly, a square phase having α = 90° is predicted to
appear only at ϕA ≈ 0.73.
A simple contact twin between two entropic RB crystals of

hard rhombs is shown in Figure 3a; the contact line (the 2D

equivalent of the 3D contact plane), which occurs where the
2D twinned crystals touch, is shown by the dashed line. As in all
twinned crystals, the contact line lies along a commonly shared
lattice direction of the two twinned crystals where they meet.
Due to an entropic preference for interdigitation, which
provides an increased number of accessible states to the system
of particles, the twinned entropic crystals of hard Brownian
particles are shifted along the axis tangent to the contact line by
a dimensionless transverse offset δ/D ≈ 0.3 (defined as the
shorter shift), as shown at ϕA = 0.62.
The fundamental origin of the shift can be inferred from a

simple model of rhomboids in a twinned configuration of RB
crystals, as shown in Figure 3b. In this figure, Δθ of the
rhomboids has been chosen to provide good agreement with
both α and r/D of both twinned crystals shown in Figure 3a.
The measured transverse offset δ, which arises from

interdigitation of the rhomboids along the boundary of the
twinned crystals, is apparent in the twinning rhomboid model.
Also, in crossing between the two crystals in the contact twin,
the average local pointing direction of the rhombs is mirror
symmetric. The idealized rhomboid twinning model shows that
δ actually depends on ϕA and would approach zero
continuously as ϕA approaches unity.
Upon close inspection and using quantitative image analysis,

we find that in a given crystal in the RB phase, on average, there
is a slight but measurable deviation of the average director
(reflecting the average “molecular” orientation of individual
rhombs) from the average bisector of the lattice direction along
the diagonal that is closer to the average director of rhombs.
We quantify this orientational deviation by γ (see Figure 4

insets for a graphical definition). In Figure 4a,b, we show
examples of two different grains of RB crystal that have
dominantly left (orange) and right pointing (blue) symmetry
breaking, corresponding to probability distributions p(γ) that
have peaks γmax < 0 and γmax > 0, respectively. The distributions
can be fit well using a Gaussian distribution, reflecting thermal
fluctuations of the orientations of individual rhombs in cages of
neighboring rhombs in the RB crystal. Interestingly, due to the
reflection symmetry of the twinned crystals across the mirror

Figure 3. Contact twinning of two RB crystals. (a) Micrograph of
observed contact twin (ϕA = 0.62) of RB crystals of rhombs. Color
wheel: encodes particle orientations. Red dashed line: mirror line
between contact twin crystals, which is parallel to one lattice director
of each RB crystal. Red solid lines: the other lattice director of the twin
crystals. Scale bar: 10 μm. (b) Idealized rhomboid model of an offset
contact twin. The smallest offset distance between the twin lattices
along the mirror line is δ.

Figure 4. Evidence of chiral symmetry breaking in RB crystals: tilting
of rhombs. Time- and ensemble-averaged normalized probability
distribution, p(γ) (in deg−1), where γ is the angle difference between
the orientation of a rhombus and one diagonal direction of the many-
particle RB crystal lattice. If the orientation of the rhombus deviates
clockwise from the diagonal lattice direction, then γ is negative (blue
points and rhombs); otherwise, γ is positive (orange points and
rhombs). Black solid lines: least-squares fits to Gaussian functions. (a)
Example of positive-deviation RB crystal having average relative
orientation γave = +5.77 ± 0.05 with standard deviation γsd = 7.47 ±
0.05 at ϕA = 0.62. Left inset: schematic showing γ > 0 for a single
rhomb. Right inset: color-coded micrograph that has γave > 0. (b)
Example of negative-deviation RB crystal having γave = −5.55 ± 0.04
with γsd = 5.83 ± 0.04 at ϕA = 0.63. Left inset: color-coded micrograph
that has γave < 0. Right inset: schematic showing γ < 0 for a single
rhomb.
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line, one would expect, and our observations also confirm, that
these two twinned RB crystals have opposite enantiomeric
senses of chiral symmetry breaking (i.e., one has γmax < 0 and
the other has γmax > 0).
Figure 4 effectively shows a remarkable form of nonlocal

chiral symmetry breaking (CSB) that is at least quasi-long range
in a crystal phase, since it effectively spans the entire grain until
a grain boundary is reached. The longer-range aspect of this
chiral symmetry breaking, which is clearly enantiomerically
selective within a given grain, distinguishes it from the much
shorter-range local chiral symmetry breaking of triangles, which
form triatic liquid crystals.21 The origin of this nonlocal CSB
effect is not captured by the simple symmetric rhomboid model
of Figure 2d, which emphasizes only rotational degrees of
freedom.
We hypothesize that this surprising longer-range CSB effect

in RB crystals can arise from a full treatment of a cage model
that includes contributions from both translational and
rotational degrees of freedom, beyond existing models that
consider either only translation34 or only rotation.25 In
particular, perfect translational alignment of the most pointed
vertices of the rhombs is not entropically favored; instead, total
entropy maximization favors a slight shift in pointing directions
of neighboring rhombs away from the lattice bisector, thereby
reducing tip−tip interference. This effectively leads to an
average pointing angle γ that is not zero, which is different than
the idealized rhomboid model would predict.
In 3D crystals, many different types of twinning, beyond a

simple contact twin, can be categorized and identified.3,4

Among these, we identify two types of structural twins that we
commonly observe in 2D RB crystals of 72° rhombs. The first
is polysynthetic twinning, a subcategory of multiple twinning,
characterized by a plurality of contact twins that have parallel
mirror axes; the example in Figure 5a at ϕA ≈ 0.605 dominantly

shows polysynthetic twinning. The parallel mirror axes tend to
give a stripe-like appearance in 2D, similar to striations that are
observed on the surfaces of 3D polysynthetic twinned crystals.1

There are also some defects present that cause the stripes to be
limited in length and to wander. The second is cyclic twinning,
characterized by a plurality of contact twins that have
nonparallel axes; the example in Figure 5b at ϕA ≈ 0.615
dominantly shows cyclic twinning in 2D. Due to the symmetry
of the RB crystal, there are two equivalent nonparallel axes in
the plane along which a twinning line may develop to form a

contact twin. Since these twinning lines are not parallel, it is
possible to develop cyclic twinning. The nonparallel axes
characteristic of cyclic RB twins in 2D can intersect, yielding
the appearance of corners in these crystals.
As ϕA is increased from RX to RB, the most likely type of

identification of twinning in terms of formation is the annealing
twin, which can occur in atomic systems as temperature is
changed. As in glassy systems that have quenched-in structural
disorder, the twinning structures become locked-in (i.e.,
effectively jammed) after ϕA is increased, so further annealing
of either polysynthetic or cyclic twins into a larger single crystal
is effectively inhibited over reasonably accessible experimental
time scales.
In Figure 6, we show examples of isolated defects in RB

crystals. A simple point defect consists of a rhomb pointing

approximately perpendicular to the other neighboring rhombs
in the lattice (Figure 6a). This defect causes a slight
deformation of the RB lattice and can cause significant
disturbances in the pointing axes of nearest neighboring
particles. A point defect can disappear if a large enough local
collective density fluctuation occurs such that the cage around
the defect dilates, enabling thermal excitations to rotate the
trapped particle so that it points along the director. Defects are
not entropically favored because they limit the number of
accessible positional and orientational configurations of the
particles (i.e. both the mis-oriented particle as well as
neighboring particles around it). Linear two- and three-particle
defects are also seen (Figure 6b,c); defects that contain multiple
neighboring rhombs, which all point along the same direction
within the defect, appear to be entropically favored over many
isolated single-particle defects. By analogy to defect interactions
in liquid crystals,35 one could potentially create an effective
attractive potential energy between defects, which is really
entropic in origin, to describe the interactions between and
clustering of defects, primarily during nucleation and growth.
Orthogonal line defects containing three rhombs are also found
(Figure 6d). Other larger defects having an even greater
number of particles can also be seen in some crystals of the RB

Figure 5. Optical microscopy observations of complex twin structures:
(a) Polysynthetic twin (ϕA = 0.605) showing multiple parallel contact
mirror lines. (b) Cyclic twin (ϕA = 0.615) showing multiple
nonparallel contact mirror lines. Defects cause wandering of the
lattice orientations. Scale bar: 10 μm. Color wheel: encodes particle
orientations.

Figure 6. Examples of defects in RB crystals of rhombs. (a) Point
defect of a single rhomb having an orientation perpendicular to the
preferred orientation of rhombs in the surrounding lattice (ϕA = 0.62).
(b) Linear line defect of two rhombs having contrary orientations (ϕA
= 0.62). (c) Linear line defect of three rhombs having contrary
orientations (ϕA = 0.61). (d) Orthogonal line defect of three rhombs
(ϕA = 0.61). Defects create local distortions in the RB lattice. Scale
bar: 10 μm. Color wheel: encodes particle orientations.
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phase. It appears that the defects are quenched-in and that any
time for annealing away such point defects is very long,
typically beyond an observation time of many hours.
Based on our video particle tracking microscopy (VPTM)

analysis of movies, we have also calculated a comprehensive set
of structural and orientational order parameters and correlation
functions30 of rhombs at different ϕA (see Figures S1−S3).
Beyond the structural features that have been our primary
focus, we have determined the mean square displacements of
translation and rotation of particles over a range of ϕA, showing
the ultimate translational and rotational trapping of particles as
ϕA is increased into RB (see Figure S4). The observed changes
in particle dynamics are thus clearly linked to the structural
changes and the overall phase behavior.

■ DISCUSSION
It is surprising and interesting that the 72° rhomb shape leads
to an extended region of hexatic liquid crystal phase, which is
more easily identified than for other particle shapes measured
in 2D thus far. The lower symmetry and higher anisotropy of
the RB particle shape, compared to squares, are responsible for
this effect. Moreover, the nature of the I−H transition for
rhombs appears to be continuous (i.e., second order), whereas
a prediction of the I−H transition for compact isotropic disks33

is discontinuous (i.e., first order). The different pointing axes of
neighboring rhombs in a local region tend to decorrelate the
spatial order over a shorter range, since variation in the local
pointing directions of individual rhombs causes a larger spread
in the distribution of center-to-center spacings between
neighboring rhombs. In addition, the fluctuating randomness
of pointing directions of the rhombs at lower densities also
favors decorrelation of six-fold bond orientational order over
shorter range as ϕA is decreased, leading to increased azimuthal
smearing of spots in the FFTs. Based on our observations and
interpretations, we conjecture that a theoretical model of the I−
H transition of Brownian hard rhombs, such as the ones we
have studied, will have very different features than the classic
theory of the I−H transition for disks. Due to the limited
system size over the relevant range of ϕA in our experiment, this
proposed difference in the order of the I−H transition between
hard disks and rhombs, while plausibly revealed by our
experiment, requires further confirmation by more extensive
experiments and simulations involving many more particles.
Although our detailed study has been limited so far to 72°

rhombs, we believe that the basic sequence of phase transitions
will be similar, even if the boundary values of ϕA differ, as the
internal angle characterizing the particles approaches 90°,
corresponding to squares. However, in the opposite limit, as the
internal angle is reduced further and further, so that the rhombs
become more needle-like, we anticipate that the interdigitation
between the rhombs will be reduced, and ultimately the H, RX,
and RB phases will yield territory to the classic nematic LC
phase, known for highly anisotropic rod-like shapes.36

As we have pointed out in a prior study of square particle
shapes, corner rounding can play a role in the phase behavior
and dynamics of the constituent particles.25,37 Although the
rhombs have a minor amount of corner rounding, which arises
from the method of fabrication of the particles, we anticipate
that rhombs having somewhat lesser degrees of rounding of
their corners will exhibit similar phase behavior. However, as
the corners of the rhombs become perfectly sharp, predictions
of simulations or theory could deviate from what we have
observed for rhomb particles that have slight corner rounding.

Many types of simulations, for simplicity, begin with a perfect
idealized particle configuration at the very highest particle
densities (e.g., in a perfect single crystal using periodic
boundary conditions) and relax the system gradually by
reducing ϕA and re-equilibrating. This is different than our
experiments, in which ϕA is raised from an isotropic phase
through the application of an osmotic pressure and in which
twin crystals can grow and imperfections, such as defects, can
become trapped. Thus, in order to compare with our
experiments, simulations of large systems of hard rhombs
would begin in I at low ϕA and would raise ϕA, thereby
providing the potential for statistically predicting formation of
various twinning structures, mirror lines, and defects.
Although the rhomboid model can explain many aspects of

our observations, it does not explain the observed nonlocal
chiral symmetry breaking associated with the pointing
directions of rhombs relative to the RB lattice. We believe
that this effect can only be explained by a more sophisticated
cage model that incorporates local translational as well as
rotational motions. Cage models based on rotationally swept
particle shapes (which emphasize rotational entropy), such as
the rhomboid model, while performing well for a certain limited
range of shapes, are not universally applicable and may not
perform as well for some other shapes. Thus, our results for
rhomb particles show that it would be worthwhile to probe the
theoretical limits of applicability of cage models of rotationally
swept particle shapes.
It would be interesting to further classify and quantify

entropic aspects of defects within the RB crystals. Although we
have shown some examples of such defects, there are many
questions associated with the effective energetic cost (or,
equivalently reduction in entropy) associated with various
defects. It is highly likely that the ultimate disappearance of a
single orientational defect in an RB crystal will be correlated
with local particle density fluctuations; a transient decrease in
local density of neighboring particles around a defect may
provide enough space for the defected particle to reorient and
become a part of the lattice. Further work is required to
quantify this coupling and Brownian annealing away of such
orientational point defects over time. Likewise, we anticipate
that rapid quenching of ϕA through the abrupt application of an
osmotic pressure (e.g., by using a very high tilt angle of the
cuvette in the microscope) will create more highly defected
systems and nonequilibrium glassy states.
In entropic twins of rhombs in 2D, there is a slight, yet well-

defined translational offset of the mirror-image crystal along the
mirror line; this offset arises from entropy maximization. This
offset is atypical of atomic twinned crystals made of attractive
elements, but offset twinning of hard particles is clearly not
parallel growth, a different defect akin to a grain boundary.
Parallel growth occurs when neighboring crystals point along
the same direction, yet are offset along a line parallel to a lattice
vector. In this system of hard rhombs, parallel growth is not
observed (or is very rare), since this is entropically unfavorable
compared to twinned configurations. However, grain bounda-
ries as well as point and line defects, which are found in many
types of colloidal crystals, are also observed in dense RB phases
of rhombs, in addition to twinned crystals.
Because there is a small decrease in particle density locally

along the twinning line, we anticipate that, if a large enough
shear force is applied to one crystal relative to the other along
the direction of the twinning line for a simple contact twin, one
might observe gliding behavior directly, yielding gliding twins.
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However, the interdigitation of the twin crystals along the
twinning line over the range of ϕA that we observe is strong
enough to inhibit gliding, at least from Brownian driving
stresses. Alternatively, other forms of non-Brownian forces
might cause annealing of defects and enable formation of very
large domains of single RB crystals. Overall, the application of
non-Brownian driving to systems of rhombs, e.g., arising from
externally applied fields, would potentially provide control over
these materials, which have interesting tunable optical proper-
ties.

■ CONCLUSION
Concentrated Brownian 2D systems of hard rhombic micro-
particles have provided the first 2D experimental system of hard
colloidal objects in which twinning has been readily observed.
Examples of contact, polysynthetic, and cyclic twinned RB
crystals have been found. Interdigitation of hard colloidal
particles at the contact line in contact twins creates an offset of
the crystals that is not typical of twinning of atomic systems in
which attractive interactions are important. Twinning may be
seen for other types of nonspherical particle shapes in 2D and
3D hard particle systems, and the range of angles of the
rhombic particle shape over which twinning is seen, beyond the
one example of 72° rhombs that we have shown, still remains as
an open question. Beyond crystal twinning, the rhombic
particle shape provides an interesting glimpse into a potentially
new form of an isotropic−hexatic transition that appears to
exhibit significant differences than the classic version of that
transition for compact and isotropic disks. The nonlocal form
of chiral symmetry breaking within single RB crystals that we
observe is not captured by the simplest form of the rhomboid
model, so a more sophisticated theoretical approach is needed
to explain the relative pointing angle of the particles relative to
the RB lattice. Overall, similar to what has been found in other
systems of particles having reduced symmetry, such as cylinders
and tetrahedra,38,39 this investigation shows that reducing the
symmetry of the particle shape from a square to a rhombus
leads to an increase in the richness of observed phase behavior.
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